Meta-Cognition. An Inverse-Inverse Reinforcement

Learning Approach for Cognitive Radars

Kunal Pattanayak (Cornell University), Vikram Krishnamurthy (Cornell University), Christopher M. Berry (Lockheed Martin).

(Research funded by Lockheed Martin and the Army Research Office)

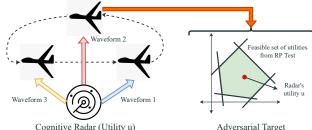
Main Idea. Detecting utility maximization \equiv Checking linear feasibility How to make checking linear feasibility difficult?

Cognitive radar \rightarrow Choose optimal waveform for target tracking Adversarial Target \rightarrow Malicious maneuvers to 'estimate' radar's utility

How to spoof adversarial attacks on radar's utility function? Ans. Cognition Masking

Intelligently perturbed radar actions successfully hide radar's utility

Background. Cognitive Radar and Revealed Preference



Cognitive Radar (Utility u)

Cognitive Radar [1-3]: Optimal waveform adaptation. For target maneuvers (probe) $\{\alpha_k\}_{k=1}^{K}$, radar chooses waveforms (response) $\{\beta_k\}_{k=1}^{K}$ that maximize utility u:

 $\beta_k = \operatorname{argmax}_{\beta \in \mathbb{R}^m} u(\beta), \ \alpha'_k \beta \leq 1$ (1)

Radar Bayesian tracker: Linear Gaussian dynamics

(i) α_k : state noise covariance

(ii) β_k : observation noise covariance

(iii) $\alpha'_k \beta_k < 1$ (1): Bound on radar SNR \equiv Bound on radar's asymptotic predicted Kalman precision [3]

'Choose best waveform subject to resource constraints'

Utility Estimation via Revealed Preference (RP): **RP Test [4, 5]** : For dataset $\mathbb{D} = \{\alpha_k, \beta_k\}_{k=1}^{K}$, linear feasibility test is equivalent to checking for utility maximization (1):

$$\mathsf{RP}(u,\mathbb{D}) \leq 0, \ u = \{u_k,\lambda_k\} \in \mathbb{R}^{2m}_+,$$
 (2)

$$u_{\text{est}}(\beta) = \min_{k} \{ u_k + \lambda_k \alpha'_k (\beta - \beta_k) \}$$
(3)

What if \mathbb{D} is noisy?

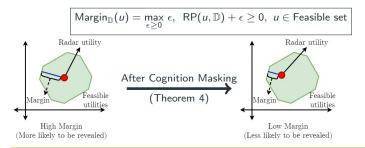
RP Test (2) generalizes to statistical hypothesis test to detect feasibility [6] (discussed in slide 4).

Cognition Masking

How to mitigate adversarial RP test and ensure poor reconstruction of radar's utility function

Result 1. Deterministic Inverse RP for Masking Cognition

Assumption: "Radar and adversary have accurate probe-response measurements." Adversarial target $\stackrel{\text{IRL}}{\rightarrow}$ RP Feasibility test (2) (Set-valued estimate of radar's utility) How to rank utility functions in the feasible set? Rank via Margin of RP test - max. perturbation to fail RP test (based on [7])



- Margin: Closeness to edge of feasible set (infeasibility of RP test)
- Center of feasible set: max. margin, edge of feasible set: zero margin
- \uparrow Margin $\iff \uparrow$ Goodness-of-fit to RP test
- Deterministic Cognition masking: Deliberately perturb radar's response to push radar's utility <u>towards</u> edge of feasible set from RP test

Deterministic Inverse IRL for Masking Cognition (Theorem 4)

Suppose radar faces adversarial constraints $\{\alpha'_k \beta \leq 1\}_{k=1}^{K}$. The radar's *deterministic* I-IRL algorithm to hide its utility u is:

Step 1. Choose margin $\epsilon_{\text{thresh}} \in \mathbb{R}_+$ Step 2. Compute naive response β_k^* (1) Step 3. Compute optimal perturbation $\{\delta_k^*\}$ for I-IRL: $\{\delta_k^*\} = \underset{\{\delta_k\} \in \mathbb{R}^m}{\operatorname{argmin}} \sum_{k=1}^{K} \|\delta_k\|_2^2, \underbrace{\operatorname{Margin}_{\{\alpha_k, \beta_k^* + \delta_k\}}(u) \leq \epsilon_{\text{thresh}}}_{(\text{Mitigating adversarial RP Test)}}$ (4)

Step 4. Transmit engineered sub-optimal responses $\{\beta_k^* + \delta_k^*\}$.

Summary

Deterministic I-IRL: Small margin ϵ_{thresh}

 \iff Closer to failing RP test (2)

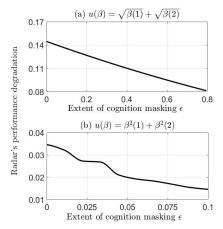
 \iff Larger deviation from radar's optimal strategy

• Margin Constraint in (4) is non-convex (bilinear).

Current research: Formulate convex relaxations of bilinear constraints in (4).

Numerical Results: Deterministic Inverse IRL

- Simulation-based datasets to illustrate I-IRL for 2 utility functions
- Parameters: Time horizon K = 50, Probe/Response dimension m = 2



Key Insights:

- Small deviation from optimal strategy masks utility by a large extent.
- Radar's performance degradation \uparrow with ϵ .

Result 2. Stochastic Inverse RP for Masking Cognition

Assumption: "Adversary has <u>noisy</u> measurements of the radar's response." (Adversary side): $\hat{\beta}_k = \beta_k + w_k$, $w_k \sim f_W$ (f_W known to radar)

(5)

Adversarial target \xrightarrow{IRL} Feasibility *Detector* (see also [3] for details)

 H_0 : RP Test (2) has a feasible solution for $\{\alpha_k, \beta_k\}$

 H_1 : RP Test (2) has NO feasible solution for $\{\alpha_k, \beta_k\}$

IRL Feasibility Detector : $\begin{aligned} \phi^*(\widehat{\mathbb{D}}) \leq_{H_0}^{H_1} F_L^{-1}(1-\eta) & (\widehat{\mathbb{D}} = \{\alpha_k, \hat{\beta}_k\}), \quad (6) \\ \phi^*(\widehat{\mathbb{D}}) : \max_{\{\overline{u}>0, \overline{u}(\beta_1)\}} \operatorname{Margin}_{\overline{u}}(\widehat{\mathbb{D}}), \text{ r.v. } L := \max_{j,k} \alpha'_j(w_j - w_k), \\ \eta : \text{ Adversary chosen bound for } \mathbb{P}(H_1|H_0) \end{aligned}$

"Radar is non-cognitive if margin is under a threshold"

- Radar can no more manipulate margin of RP test.
- Can at best manipulate $\mathbb{P}(H_1|\{\alpha_k,\beta_k\},u)$ (Cond. Type-I error prob.)
- Stochastic Cognition masking: Deliberately perturb radar's response to mitigate IRL detector (<u>increase</u> conditional Type-I error probability).

Stochastic Inverse IRL for Masking Cognition (Theorem 5)

Adversary's sensor is noisy; everything else the same as deterministic case. Radar's *stochastic* I-IRL algorithm is:

Step 1. Choose sensitivity parameter $\lambda > 0$ Step 2. Compute naive response β_k^* (1) Step 3. Compute optimal perturbation $\{\delta_k^*\}$ for I-IRL: $\{\delta_k^*\} = \underset{\{\delta_k\} \in \mathbb{R}^m}{\operatorname{argmin}} \sum_{k=1}^{K} (u(\beta_k^*) - u(\beta_k^* + \delta_k)) - \lambda \underbrace{\mathbb{P}(H_1 | \{\alpha_k, \beta_k^* + \delta_k\}, u)}_{(\operatorname{Mitigating adversarial IRL detector)}}$ (7) Step 4. Transmit engineered sub-optimal responses $\{\beta_k^* + \delta_k^*\}$

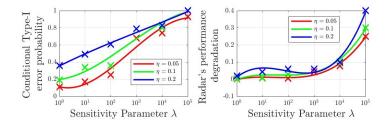
(7): Ensuring low margin of RP Test with high probability

Summary

- Stochastic I-IRL: Trade-off between \uparrow *QoS* and \uparrow *adversarial obfuscation*.
- Radar can only estimate $\mathbb{P}(H_1|H_0, u)$ (7) via Monte-Carlo methods.
- Stochastic approximation based algorithms like **SPSA** [8] can be used for implementing optimization problem (7).
- SPSA \rightarrow Fewer (only 2) computations/update wrt finite diff. methods.

Numerical Results: Stochastic Inverse IRL

- Simulations for a single utility function $u(\beta) = \sqrt{\beta_1} + \sqrt{\beta_2}$
- Parameters: Time horizon K = 50, Probe/Response dimension m = 2



Key Insights:

- Small performance loss sufficiently confuses IRL detector (large cond. Type-I error).
- Both adversarial confusion and radar's performance degradation \uparrow with $\lambda.$
- Interestingly, performance degradation \downarrow with η (error bound).

Conclusion and Extensions

Summary:

- Radar counter-countermeasure to mitigate an adversarial countermeasure
- Cognition Masking: Deliberately perturb optimal radar waveforms to sufficiently reduce margin of RP test and 'hide' radar's utility.
- Sub-optimality in response trades-off between Privacy and Performance
- Methodology inspired from adversarial obfuscation [9] in deep learning and differential privacy [10]

Applications of Inverse IRL:

Online Ad Design. Deliberately tweak meta-data to incentivize user clicks Survey Design. Deliberate abnormality in questions to incentivize truthfulness

Extensions (Current research):

- 1. Finite sample results for spoofing the adversary's IRL detector
- 2. Convex relaxations of the I-IRL objective function
- 3. **Counter**-(counter-)ⁿmeasure: What if adversary knows radar's spoofing strategy? *Game theoretic approach*?

Thank You!

Miscellaneous

• How justified is the constrained utility maximization abstraction for radar operation?

Quite prevalent in literature:

(i) Multi-UAV network [11]: Utility \rightarrow Fairness and downlink data rate, Constraint \rightarrow Transmission power, Cramer-Rao bound on localization accuracy (ii) Q-RAM (Resource Allocation) [12]: Utility \rightarrow QoS for tracking and search, Constraint \rightarrow Bandwidth, Short-term and Long-term

constraints

(iii) Radar Tracking with ECM [13]: Utility \rightarrow Neg. of weighted mean of radar energy and dwell time, Constraint \rightarrow 4% Cap on lost tracks due to ECM

• Is conditional Type-I probability the only I-IRL metric for adversarial obfuscation in stochastic I-IRL?

No fixed formula, does need more work. Some intuitive alternatives: (a) Use deterministic I-IRL <u>as is</u>. Formulate concentration inequalities for margin of the noisy dataset.

(b) Manipulate the <u>average</u> margin instead of margin. BUT, might be underplaying robustness of IRL detector.

(c) [**Speculative**] Use a neural network to learn IRL method on the fly and disrupt.

Remark: I-IRL hinges delicately on IRL methodology.

Other heuristic ideas to hide utility?

• What's next after IRL, and inverse IRL? I2-IRL?

Game-theoretic formulation.

Key challenge: Formulate a utility function in terms of both adversary probes and radar response.

Anticipated outcome: Inverse game theory - Detecting play from the Nash equilibrium of a game between adversary and radar.

References

- Simon Haykin et al. "Cognitive tracking radar". In: 2010 IEEE Radar Conference. IEEE. 2010, pp. 1467–1470.
- Kristine L Bell et al. "Cognitive radar framework for target detection and tracking". In: *IEEE Journal of Selected Topics in Signal Processing* 9.8 (2015), pp. 1427–1439.
- [3] Vikram Krishnamurthy et al. "Identifying cognitive radars-inverse reinforcement learning using revealed preferences". In: IEEE Transactions on Signal Processing 68 (2020), pp. 4529–4542.
- [4] S. N. Afriat. "The construction of utility functions from expenditure data". In: International economic review 8.1 (1967), pp. 67–77.
- [5] H. R. Varian. "Revealed preference and its applications". In: The Economic Journal 122.560 (2012), pp. 332–338.
- [6] Vikram Krishnamurthy and William Hoiles. "Afriat's test for detecting malicious agents". In: *IEEE Signal Processing Letters* 19.12 (2012), pp. 801–804.
- [7] Hal R Varian et al. Goodness-of-fit for revealed preference tests. Citeseer, 1991.

- [8] James C Spall. "An overview of the simultaneous perturbation method for efficient optimization". In: Johns Hopkins apl technical digest 19.4 (1998), pp. 482–492.
- [9] Varun Chandrasekaran et al. "Face-off: Adversarial face obfuscation". In: arXiv preprint arXiv:2003.08861 (2020).
- [10] Rathindra Sarathy and Krishnamurty Muralidhar. "Evaluating Laplace noise addition to satisfy differential privacy for numeric data.". In: *Trans. Data Priv.* 4.1 (2011), pp. 1–17.
- [11] Xinyi Wang et al. "Constrained utility maximization in dual-functional radar-communication multi-UAV networks". In: IEEE Transactions on Communications 69.4 (2020), pp. 2660–2672.
- [12] Jeffery Hansen et al. "Resource management for radar tracking". In: 2006 IEEE Conference on Radar. IEEE. 2006, 8–pp.
- [13] WD Blair et al. "Benchmark for radar allocation and tracking in ECM". In: IEEE Transactions on Aerospace and Electronic Systems 34.4 (1998), pp. 1097–1114.