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Introduction. Motivation and State-of-the-Art

Problem: Consider a decision-making

agent. Ground truth x → takes action a.

How to identify underlying strategy from

behavior p(a|x)?

Ans: Inverse Reinforcement Learning (IRL)

Why IRL?
- Autonomous navigation: Learning from

expert driver’s actions [1]

- Interpretable ML: Understanding black-box

classification behavior

- Stealthy Radar Operation: Extract

adversary strategy, avoid detection

Lines of Work:

I. Traditional IRL in ML [2–4]:

- Markov Decision Process

- Assumes the existence of a reward that

rationalizes agent actions

II. Behavioral/Micro- Economics [5–8]

(Revealed Preference):

- Constrained Utility Maximization

- Tests for the existence of a rationalizing

utility function (More fundamental)

- Set-valued estimation of utility function
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Organization

• Revealed Preference (RP). Background and Notation

Contributions:

• Part A: Unifying Bayesian and non-Bayesian RP [9]

• Part B: Interpretable Deep Image Classification [10]

• Part C: Interpreting YouTube Commenting Behavior [11]

• Part D: Inverse Optimal Stopping [12, 13]
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Revealed Preference (RP). Background and Notation

Classical RP (Single Agent) [5, 8]

Known: Sequence of budgets (probe) and

consumption bundles (response)

{g1:K , β1:K}, gk (·) > 0 and non-decreasing,

βk ∈ RN
+, k = 1, 2, . . . ,K

Aim: Test for budget constrained utility

maximization. Estimate monotone utility

function u(β) > 0 s.t.

βk = argmax
β∈RN+

u(β), gk (β) ≤ 0

Solution (Generalized Afriat’s Thm. [8]):

Find positive reals uk , λk s.t.

us − ut − λt g ′t (βs ) ≤ 0, ∀ s, t (1)

u(β) = min
k
{uk + λkgk (β)} (2)

Bayesian RP (Multiple Agents) [7]

Known: Collection of agents K = {1, 2, . . . ,K}.
Finite states X , prior π0, observations Y, actions A.

Agent k: Utility Uk (x, a) (probe),

Observation likelihood αk (y |x) (attention response).

Computes posterior pk (x|y) and takes action a.

Aim: Test for constrained Bayesian utility maximization

(UM). Estimate rational inattention (RI) cost C(α) s.t.

αk = argmaxα Eπ0,α
{Uk (x, a∗(y))}︸ ︷︷ ︸
J(α,Uk )

−C(α)

a∗(y) = argmaxa E{Uk (x, a)|y} (3)

Existence (NIAS and NIAC inequalities [7]):

Find positive reals ck s.t.

J(αt ,Ut)− ct ≥ J(αs ,Ut)− cs ∀s, t (4)

− Convex feasibility to identify utility maximization.

− Traditional IRL closely resembles NIAS inequality [7] -

“Find rewards for which changing the observed policy is

worse off for the agent”.

− Bayesian RP is more fundamental - Does not assume

the existence of C .
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− Afriat’s Theorem [5]: gk(β) = p′kβ − 1, pk ∈ RM
+ in (1).

− Central Idea in classical and Bayesian RP: Relative optimality suffices

for global optimality.

Research Motivation:

− Piece-wise stitching of budgets to construct a utility function that

rationalizes the data.

Can it be done for Bayesian RP too? → Equivalence Result [9].

− Can the RP test be be used to understand complex black-box

behavior? → [10] for Deep Image Classification, [11] for YouTube

comments.

− Variation in responses due to varying probes reveals underlying

strategy (utility).

Extension of philosophy to stopping time problems → [12, 13]
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Part A: Unifying Classical and Bayesian RP

Classical RP - 1967, Bayesian RP - 2015.

Identical Idea: Check for relative optimality.

Does there exist a formal equivalence?

Yes, but not obvious. Utility u is unknown in

classical RP, and known in Bayesian RP.

Result 1. Classical RP test for unknown

budgets {g(β)− γk ≤ 0}, known utilities {uk}.

γs − γt − λt(ut(βs)− ut(βt)) ≤ 0

g(β) = max
k
{γk + λk (uk (β)− uk (βk ))} (5)

Result 2. Bayesian RP test is equivalent to (5)

on the Blackwell partial order for pmfs.

Key Idea. In classical RP, u(x) ↑ if x ↑
element-wise. Similarly, expected utility

J(α,U) ↑ if α ↑ wrt Blackwell order (B)[14]:

Partial order on observation likelihoods.

α ≥B ᾱ =⇒ ᾱ = αQ, Q : row stochastic

ᾱ is obtained by stochastically garbling α, and

hence, Blackwell dominated by α.

Parameter Mapping for Equivalence Result

Classical RP Bayesian RP

Element-wise order ≡ Blackwell order

Time step k ≡ Agent index k

Consumption βk ≡ Obs. Likelihood αk

Budget g(β)− γk ≡ Cost C(α)− C(αk )

Utility function uk (·) ≡ Exp. utility J(·,Uk )

Result 3.

Enhancing [7]: Construction of a monotone

(wrt Blackwell order) and convex cost C .

C(α) = max
k∈K
{ck + J(α,Uk )− J(αk ,Uk )}

(6)

Above reconstruction follows the style of

Afriat’s Theorem and builds on existence

conditions of [7].
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Part B: Interpretable Deep Image Classification

Can neural networks’ (NN) image

classification be explained by Bayesian UM?

− Experiments on CIFAR-10 dataset, 200

trained NNs, 5 architectures

Main Idea.

1. Record classification performance of a

trained NN by varying training parameters.

2. Bayesian RP test for Interpretability:

Estimate BOTH utility and cost that

rationalize NN dataset

D = {π0, {pk (a|x), k = 1, 2, . . . ,K}

U - preference ordering over image classes,

C - Learning Cost (wrt training parameter).

Variable Map:

State: X ∼ π0 - true label. π0 from CIFAR-10

Observation: Y ∼ α(y |x) - accuracy of learned

features

Action: a = f (y) - predicted image label

Agent: Trained NN, k ∈ {1, . . . ,K} indexes

training parameter

Estimate:

Classification preference: Uk (x , a)

Cost of training: C(p(a|x))

Main Results.

1. Bayesian UM robustly fits deep image

classification (dataset D passes Bayesian RP

test with high margin).

2. Reconstructed U,C can predict NN

performance without simulation

(at least 94% accuracy).

3. Sparsity-enhanced version (fewer variables)

of Bayesian RP test.
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Robustness. How well does NN dataset D pass

the Bayesian RP test?

− Vary training epochs

− Why Robustness?: Find the solution that

passes Bayesian RP test with largest margin.

Robustness value R: Distance of interior-most

point from edge of feasible set.

Higher R =⇒ better fit to UM model.

R = maxε>0 ε, J(pt ,Ut)−ct−J(ps ,Ut)+cs ≥ ε

Robustness results on NN dataset:

Aggregate classification performance of 20 NNs

by varying training epochs.

Architecture R (×10−4)

LeNet 37.97

AlexNet 40.60

VGG16 119.8

ResNet 132.3

Network-in-Network 149.1

Inference: NiN and ResNet architectures fit

Bayesian UM model 4x better than less

complex architectures.

Predictive Ability. How well does interpretable

model predict image classification performance?

− Inject artificial Gaussian noise into CIFAR-10

training dataset and vary noise variance

− Use sparsest solution of Bayesian RP test

min
∑K

k=1 ‖Uk‖1, J(pt ,Ut)−ct ≥ J(ps ,Ut)−cs

Main Idea.

1. Estimate U for new noise variance by

interpolating U1:K (from NN simulations for

known noise variances).

2. Solve constrained Bayesian UM with utility

U and reconstructed cost C .

Result: Predicted performance p̂(a|x).

Compare against true performance p(a|x).

Prediction Accuracy: For new noise variance.

maxx,a |p̂(a|x)− p(a|x)| = 0.04

KL divergence between p(a|x), p̂(a|x):

• LeNet: 0.015

• AlexNet: 0.012

• VGG16: 0.016

• ResNet: 0.006

• NiN: 0.018.

Low KL-divergence: Interpretable model is

statistically similar to trained NN.
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Insights: Bayesian RP on deep image classification

U(x , a) for the ResNet architecture.

1. U(x , a) peaks at x = a.

2. Higher preference given to

correctly classifying a cat over a ship.

(Disparity in U(x , x) values over x be

used for training data correction)

3. A dog is more likely to be classified

as a horse than a ship.

(Similarity between image labels)

Reconstructed training cost C as a

function of classification accuracy.

1. For a fixed classification accuracy,

ResNet incurs least cost of training,

and AlexNet incurs the most.

2. More complex and deeper networks

=⇒ smaller cost of learning.

(Prefer correct classification over cost

minimization)
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Part C: Interpreting YouTube Commenting Behavior

State: X ∈ {low viewcount, high viewcount},
X ∼ π0 (prior)

Observation: Y ∼ α(y |x). Visual cues from

thumbnail, video description

Attention function of viewer: α

Action: a. Comment count (high or low),

sentiment (positive, negative or neutral)

Commenter’s reputation: U(x , a)

Rational Inattention Cost: C(α)

Agent: k ∈ {1, 2, . . . ,K}.
Video category, frame.

Aim: Given D = {π0, {pk (a|x)} from K

agents, estimate utility functions Uk and RI

cost C that rationalize D.

− Reconstructed utility functions and cost:

Parametrize interpretable model for YouTube

commenting behavior.

− Bayesian RP test (5): Pass test only if

pass margin exceeds ε (user-defined).

Massive dataset: 140k videos, 25k channels.

Dimension Reduction. How to group videos

of specific topic with similar commenting

behavior?

(i) User-centric: Deep Clustering using

thumbnail & description.

(ii) Content-centric: Video category.

Main Result: YouTube commenting is

consistent with utility maximization.

Estimated utility can predict commenting

behavior. (83% accuracy).
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Autoencoder partitions YouTube dataset into 8 distinct clusters (agents).

How well does Bayesian Utility Maximization explain dataset?
General Rational Inattention cost: All 8 clusters pass test.

Renyi/Shannon mutual information cost: 2/8 clusters pass test.

Finer Granularity. 18 categories using topic (Gaming, Politics, Education, etc.)

Result: 10 categories satisfy general cost, 2 categories satisfy Renyi/Shannon.

Key Insights:
• Clusters fail Renyi/Shannon by small margin =⇒ model is robust.

• Utility (reputation) is substantially higher for popular videos.

• Predictive Accuracy. Given a video in a specific category, predicts

comment count with 83% accuracy; sentiment with 80% accuracy.
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Quantifying robustness:

• For categories that satisfy utility

maximization, how far are they

from failing.

• For categories that don’t satisfy,

how close are they to passing.

1. For categories that fail general cost,

find min. perturbation to pass (ε1).

Result: Average ε1= 1.2× 10−3.

2. For categories that satisfy

general cost, find max. perturbation

to fail (ε2).

Result: Average ε2 = 7.01× 10−3.

Conclusion: ε1/ε2 ≈ 6, hence categories

are much closer to

satisfying general cost than failing.

3. For categories that satisfy general cost, find

min. perturbation to satisfy Renyi or Shannon

cost.

Renyi Entropy: Hβ(p) =
∑n

i=1 log(pβi )/(1− β).

Shannon cost: Renyi cost with β → 1.
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Part D: Inverse Optimal Stopping

Classical/Bayesian RP: Tests for static

optimization.

− How to extend idea to detect sequential

optimization, e.g. optimal stopping?

− Main Idea. Change parameters and observe

change in policy (strategy)

Decision Problems: k ∈ {1, 2, . . . ,K}
Time step: t = 1, 2, . . .

State: x ∼ π0, x ∈ X = {1, 2, . . . ,X}
Observation: yt ∈ Y, yt ∼ B(yt |x)

Action: a ∈ A
Running cost: c̄t = [ct(1) ct(x2) . . . ct(X )]

Stationary Policy: µk : ∆(X )→ A∪ {continue}
Stopping Cost: s̄k (a) = [sk (1, a) . . . sk (X , a)]

Aim: Given {π0, pk (a|x),C(µk )}, test if ∃ s̄k (a)

s.t. µk minimizes expected cost, k = 1, 2, . . . ,K :

µk = argminµ Eµ{
τ(µ)−1∑
t=0

c ′tπt}︸ ︷︷ ︸
C(µ)

+Eµ
{
π′τ s̄k (a)

}︸ ︷︷ ︸
J(µ,s̄k )

Challenges:

1. C(µ) does not have closed form expression.

2. µk is not known, only the surrogate action

policy pk (a|x) is known.

How to tackle?

Likelihood fn. p(y1:τ |x) ≥B p(a|x) and

J(µj , s̄k ) ≥ J(pj (a|x), s̄k ). Equality when j = k.

− Can at best show relative optimality holds.

Main Results.

1. Necessary and sufficient conditions for

relatively optimal stopping.

2. Examples: Optimal SHT, Bayesian Search

3. Finite sample effects on (1):

Statistical tests for relative optimality, bounds

on Type-I/II errors.
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Conditions for Relatively Optimal Stopping:

Find positive reals sk (x , a) s.t. ∀j , k
(i)
∑
x

pk (x |a)(sk (x , a)− sk (x , b)) ≤ 0, a, b ∈ A

(ii)J(pk , s̄k ) + C(µk ) ≤ J(pj , s̄k ) + C(µj ) (7)

Above conditions test:

1. Optimal choice of stopping action

2. Relative optimality of policy µk

Ideas behind proof:

Sufficient statistic for policy µk : pµk (y1:τ |x).

Necessity of (7): Uses Blackwell dominance.

pµk (y1:τ |x) ≥B pk (a|x)

Sufficiency of (7): Since Y is unknown, assume

|Y| = |A|, µk : injective map from Y to A.

Relating optimal stopping to Bayesian UM:

J(µ, s): Only depends on stopping posterior

distribution pµ(x |y1:τ ). Hence,

pµ(y1:τ |x) → attention α(y |x) in Bayesian RP.

C(µ) → attention cost in Bayesian RP.

J(µ, s̄)→ −ve of expected utility in Bayesian RP.

Example. Inverse SHT: Stopping time problem

with structure. X = A = {1, 2}, s(x , x) = 0,

C(µ) = Eµ{τ(µ)}.

Simulation Results: 3 decision problems

− True stopping costs (yellow points) lie in the

feasible set generated by (7).

− Lower bounding expected stopping time:

Given p(a|x) for some policy µ, Eµ(τ) can be

lower bounded via (7):

Eµ{τ} ≥
mins̄1:K maxk Eµ{τ}+ J(µk , s̄k )− J(p, s̄k ),

where s̄1:K ∈ feasible set (blue region).

(Simulation free aproximation)
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Finite Sample Effects on Detecting Relative

Optimality (7).

Consider Inverse SHT. Given empirical dataset

D̂ = {π0, p̂(a|x), Êµ{τ}}
D̂ computed using Lk ≤ ∞ samples for kth

decision problem. Denote L = {Lk}.

Plug-in Test for relatively optimal stopping:∑
x

p̂k (x |a)(sk (x , a)− sk (x , b)) ≤ 0, a, b ∈ A

J(p̂k , s̄k ) + Ĉ(µk ) ≤ J(p̂j , s̄k ) + Ĉ(µj ) (8)

How accurate is the plug-in test (8)?

Events H0,H1: D̂ generated and not generated,

resp. , by relatively optimal agent policies {µk}.
Hypothesis Test: Declare H0 if (8) is feasible,

otherwise H1.

Finite Sample Result.

Bounds on Type-I/II errors of Hyp. Test:

P(H1|H0) ≤ θ1,0(D̂,L) exp{−φ1,0(D̂,L)}, and

P(H0|H1) ≤ θ0,1(D̂,L) exp{−φ0,1(D̂,L)},

where θ0,1(·), θ1,0(·), φ0,1(·), φ1,0(·) ∈ R+

decrease with increasing sample size L.

Outline of proof: Finite sample result

Pmfs p̂k (a|x): Dvoretzky-Kiefer-Wolfowitz

(DKW) inequality to bound error between

pmfs: P(maxa |pk (a|x)− p̂k (a|x)| ≥ ε) ≤ δk (ε)

Empirical avg. stopping time Êµk {τ}: Assume

τ(µk ) ≤ τmax ∀ k a.s. , Hoeffding’s inequality

to bound error from true mean:

P(|Êµk {τ} − Eµk {τ}| ≥ ε) ≤ γk (τmax, ε)

Union bound: Combine DKW and Hoeffding

bounds to get error bound between D̂ and D:

P(|D̂− D| ≥ ε) ≤ κ(ε)

Compute minimum perturbation ε(D̂) such

that D̂ + ε(D̂) fails (7), set ε(D̂)→ ε in union

bound to get Type-I error bound.

Intuition: If D̂ + ε(D̂) fails (8), then all

datasets within ε(D̂) ball PASS the test (7).

Type-I error: Probability that true dataset lies

outside the ε(D̂) ball.
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Current Research

1. Deep Bayesian Revealed Preference: Feature engineering for

richer state space representation of real-world data

2. Inverse Controlled Sensing: How to detect if a sensing agent

optimally switches between sensing modes based on target

measurements?

3. Inverse-Inverse Reinforcement Learning: How to mask

agent strategy? Optimal stealth-performance trade-off

4. Structural Results: How to exploit problem structure to

reduce computation complexity of IRL conditions? Does it

suffice to check relative optimality of only few pairs of agents?
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Thank You!
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