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Introduction. Motivation and State-of-the-Art

Problem: Consider a decision-making
agent. Ground truth x — takes action a.
How to identify underlying strategy from
behavior p(alx)?

Ans: Inverse Reinforcement Learning (IRL)

Forward

Optimization
Rewards, » Optimal
Budgets |€ = = = = = = = Behavior

Inverse Optimization
(Il-posed problem)

Why IRL?

- Autonomous navigation: Learning from
expert driver’s actions [1]

- Interpretable ML: Understanding black-box
classification behavior

- Stealthy Radar Operation: Extract
adversary strategy, avoid detection

Optimal [ —
Pohcx = A

Train Autonomous
Helicopters

Expert Pilot

Lines of Work:

I. Traditional IRL in ML [2-4]:

- Markov Decision Process

- Assumes the existence of a reward that
rationalizes agent actions

Il. Behavioral/Micro- Economics [5-8]

(Revealed Preference):

- Constrained Utility Maximization

- Tests for the existence of a rationalizing
utility function (More fundamental)

- Set-valued estimation of utility function
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e Revealed Preference (RP). Background and Notation

Contributions:

Part A: Unifying Bayesian and non-Bayesian RP [9]

Part B: Interpretable Deep Image Classification [10]

Part C: Interpreting YouTube Commenting Behavior [11]

Part D: Inverse Optimal Stopping [12, 13]
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Revealed Preference (RP). Background and Notation

Classical RP (Single Agent) [5, 8]

Known: Sequence of budgets (probe) and
consumption bundles (response)

{g1.k, B1.k}, gk(-) > 0 and non-decreasing,
BreRY, k=1,2,....K

Aim: Test for budget constrained utility
maximization. Estimate monotone utility
function u(B) > 0 s.t.

Bk = argmaxs u(B), &(B) <0

Solution (Generalized Afriat’s Thm. [8]):
Find positive reals uy, Ax s.t.

Us — Ur — At gt/(/is) <0, Vs,t (1)
u(B) = min{u + Mg (B)} (2)

Utility
Function

| Response

Bayesian RP (Multiple Agents) [7]

Known: Collection of agents K = {1,2,...,K}.
Finite states X, prior mp, observations ), actions A.
Agent k: Utility Ux(x, a) (probe),

Observation likelihood a(y|x) (attention response).

Computes posterior px(x|y) and takes action a.
Aim: Test for constrained Bayesian utility maximization
(UM). Estimate rational inattention (RI) cost C(«) s.t.
ak = argmax, Er; o{Uk(x, a"(y))} —C(«)
—_— —
(e, Uy)

a*(y) = argmax, E{Uk(x a)|y} ®3)

Existence (NIAS and NIAC inequalities [7]):
Find positive reals ¢ s.t.

J(ae, Up) — ¢ > J(as, Up) — c5 Vs, t (4)

— Convex feasibility to identify utility maximization.

— Traditional IRL closely resembles NIAS inequality [7] -
“Find rewards for which changing the observed policy is
worse off for the agent”.

— Bayesian RP is more fundamental - Does not assume
the existence of C.
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Afriat's Theorem [5]: g«(8) = piB — 1, px € RY in (1).
Central ldea in classical and Bayesian RP: Relative optimality suffices
for global optimality.

Research Motivation:

Piece-wise stitching of budgets to construct a utility function that
rationalizes the data.
Can it be done for Bayesian RP too? — Equivalence Result [9].

Can the RP test be be used to understand complex black-box
behavior? — [10] for Deep Image Classification, [11] for YouTube
comments.

Variation in responses due to varying probes reveals underlying
strategy (utility).
Extension of philosophy to stopping time problems — [12, 13]
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Part A: Unifying Classical and Bayesian RP

Classical RP - 1967, Bayesian RP - 2015.
Identical Idea: Check for relative optimality.

Does there exist a formal equivalence?

Yes, but not obvious. Utility u is unknown in
classical RP, and known in Bayesian RP.
Result 1. Classical RP test for unknown
budgets {g(8) — v« < 0}, known utilities {uy}.

¥s — vt — Ae(ue(Bs) — ue(Be)) <0
g(B) = mkax{“fk + M (uk(B) — uk(Br))} (5)

Result 2. Bayesian RP test is equivalent to (5)
on the Blackwell partial order for pmfs.

Key ldea. In classical RP, u(x) 1 if x 1
element-wise. Similarly, expected utility

J(a, U) 1 if a1 wrt Blackwell order (BB)[14]:
Partial order on observation likelihoods.

a>pa = a=aQ, Q: row stochastic

& is obtained by stochastically garbling «, and
hence, Blackwell dominated by «.

Parameter Mapping for Equivalence Result

Classical RP Bayesian RP

Element-wise order =  Blackwell order

Time step k

Agent index k

Obs. Likelihood ay
Cost C(a) — C(ak)
Exp. utility J(-, Ux)

Consumption By =

Budget g(8) —w =
Utility function wu(-)

Result 3.

Enhancing [7]: Construction of a monotone
(wrt Blackwell order) and convex cost C.

C(Oc) = Eﬂeal%({ck + J(Ol7 Uk) — J(Oék, Uk)}
(6)

Above reconstruction follows the style of
Afriat’'s Theorem and builds on existence
conditions of [7].
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Part B: Interpretable Deep Image Classification

Can neural networks’ (NN) image
classification be explained by Bayesian UM?

Neural
Network

Predicted
image label

. Statistically
True image Identical

label

Bayesian Utility
Maximizer
(U.0)

— Experiments on CIFAR-10 dataset, 200
trained NNs, 5 architectures

Main Idea.

1. Record classification performance of a
trained NN by varying training parameters.
2. Bayesian RP test for Interpretability:
Estimate BOTH utility and cost that
rationalize NN dataset

D = {mo, {px(alx), k =1,2,...,K}

U - preference ordering over image classes,
C - Learning Cost (wrt training parameter).

Variable Map:

State: X ~ m - true label. my from CIFAR-10
Observation: Y ~ a(y|x) - accuracy of learned
features

Action: a = f(y) - predicted image label
Agent: Trained NN, k € {1,..., K} indexes
training parameter

Estimate:

Classification preference: Uj(x, a)

Cost of training: C(p(alx))

Main Results.

1. Bayesian UM robustly fits deep image
classification (dataset D passes Bayesian RP
test with high margin).

2. Reconstructed U, C can predict NN
performance without simulation

(at least 94% accuracy).

3. Sparsity-enhanced version (fewer variables)
of Bayesian RP test.
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Robustness. How well does NN dataset D pass
the Bayesian RP test?

— Vary training epochs

— Why Robustness?: Find the solution that
passes Bayesian RP test with largest margin.

Robustness value R: Distance of interior-most
point from edge of feasible set.

Higher R — better fit to UM model.

R = maxeso0€, J(pr, Ur)—ct—J(ps, Ut)+cs > €

Robustness results on NN dataset:
Aggregate classification performance of 20 NNs
by varying training epochs.

Architecture R (x107%)
LeNet 37.97
AlexNet 40.60
VGG16 119.8
ResNet 132.3
Network-in-Network 149.1

Inference: NiN and ResNet architectures fit
Bayesian UM model 4x better than less
complex architectures.

Predictive Ability. How well does interpretable
model predict image classification performance?
— Inject artificial Gaussian noise into CIFAR-10
training dataset and vary noise variance

— Use sparsest solution of Bayesian RP test
min 3K | Ukll1, J(pe, Ue) —ce > J(ps, Ue) —cs

Main Idea.

1. Estimate U for new noise variance by
interpolating U;.x (from NN simulations for
known noise variances).

2. Solve constrained Bayesian UM with utility
U and reconstructed cost C.

Result: Predicted performance p(alx).
Compare against true performance p(alx).

Prediction Accuracy: For new noise variance.
maxx,a |p(alx) — p(alx)| = 0.04
KL divergence between p(alx), p(a|x):

e LeNet: 0.015

e AlexNet: 0.012
e VGG16: 0.016

e ResNet: 0.006
e NiN: 0.018.

Low KL-divergence: Interpretable model is

statistically similar to trained NN. 7/16
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Utility value of predicted image label

Insights: Bayesian RP on deep image classification

airplane automobile  bird cat deer dog frog horse  ship truck
True image labels

U(x, a) for the ResNet architecture.

1. U(x, a) peaks at x = a.

2. Higher preference given to
correctly classifying a cat over a ship.
(Disparity in U(x, x) values over x be
used for training data correction)

3. A dog is more likely to be classified
as a horse than a ship.

(Similarity between image labels)

800
——AlexNet
700 —LeNet
Network-in-Network (NiN)
600 —ResNet-50
—VGG16

Cost of information acquisition
»
=3
o

0 01 02 03 04 05 06 07 08 09 1
7 (classification accuracy)

Reconstructed training cost C as a
function of classification accuracy.

1. For a fixed classification accuracy,
ResNet incurs least cost of training,
and AlexNet incurs the most.

2. More complex and deeper networks
—=> smaller cost of learning.

(Prefer correct classification over cost
minimization)
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Part C: Interpreting YouTube Commenting Behavior

State: X € {low viewcount, high viewcount},
X ~ o (prior)

Observation: Y ~ a(y|x). Visual cues from
thumbnail, video description

Attention function of viewer: o

Action: a. Comment count (high or low),
sentiment (positive, negative or neutral)
Commenter’s reputation: U(x, a)

Rational Inattention Cost: C(«)

Agent: k € {1,2,...,K}.

Video category, frame.

Aim: Given D = {mo, {pk(a|x)} from K
agents, estimate utility functions U, and RI
cost C that rationalize D.

— Reconstructed utility functions and cost:
Parametrize interpretable model for YouTube
commenting behavior.

— Bayesian RP test (5): Pass test only if
pass margin exceeds e (user-defined).

Viewcount Visual cues Add Comment
and Like/Dislike

.., (action a)

Add Comment

Massive dataset: 140k videos, 25k channels.
Dimension Reduction. How to group videos
of specific topic with similar commenting
behavior?

(i) User-centric: Deep Clustering using
thumbnail & description.

(if) Content-centric: Video category.

Main Result: YouTube commenting is
consistent with utility maximization.
Estimated utility can predict commenting
behavior. (83% accuracy).
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Denoising Autoencoder Partitioned
Euclidean space

1 (text) 1

Clustering

»(gg}@

sy
\Convolutional,

Guinness World Records @ ' Neural Nets .
Thumbnail, Description :_ _(image)
of 140k videos

Autoencoder partitions YouTube dataset into 8 distinct clusters (agents).

How well does Bayesian Utility Maximization explain dataset?

General Rational Inattention cost: All 8 clusters pass test.

Renyi/Shannon mutual information cost: 2/8 clusters pass test.

Finer Granularity. 18 categories using topic (Gaming, Politics, Education, etc.)

Result: 10 categories satisfy general cost, 2 categories satisfy Renyi/Shannon.
Key Insights:
e Clusters fail Renyi/Shannon by small margin = model is robust.
e Utility (reputation) is substantially higher for popular videos.
e Predictive Accuracy. Given a video in a specific category, predicts
comment count with 83% accuracy; sentiment with 80% accuracy.
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Quantifying robustness:

Not Consistent with

e For categories that satisfy utility Utility Maximization

maximization, how far are they

from failing.

e For categories that don't satisfy,

how close are they to passing.

;’/kenyilShannon Mutuai‘}i General Cost
\_Information Cost /

1. For categories that fail general cost,
find min. perturbation to pass (€1).
Result: Average €1= 1.2 x 1073,

2. For categories that satisfy
general cost, find max. perturbation
to fail (e2).

Result: Average €2 = 7.01 x 1073,
Conclusion: 61/62 ~ 6, hence categories
are much closer to

satisfying general cost than failing.

3. For categories that satisfy general cost, find
min. perturbation to satisfy Renyi or Shannon
cost.

Renyi Entropy: Hy(p) = 37, log(p/)/(1 — ).
Shannon cost: Renyi cost with 5 — 1.

01

90 percentie mark (y = 0.05685)

s Th,” ﬂ]HH ﬂhw

0 10 40 50
Category pairs (ij). i% (ije C,

5=1
g
]
—
——

R, averaged over C_.
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Part D: Inverse Optimal Stopping

Classical /Bayesian RP: Tests for static
optimization.

— How to extend idea to detect sequential
optimization, e.g. optimal stopping?

— Main Idea. Change parameters and observe
change in policy (strategy)

Decision Problems: k € {1,2,... K}

Time step: t=1,2,...

State: x ~m, x € X ={1,2,...,X}
Observation: y: € Y, y+ ~ B(yt|x)

Action: a € A

Running cost: & = [c:(1) ct(x2) ... ct(X)]
Stationary Policy: ;i : A(X) — AU {continue}
Stopping Cost: 5,(a) = [sc(1,a)...s¢(X, a)]

Aim: Given {mo, px(a|x), C(uk)}, test if 3 5¢(a)

s.t. px minimizes expected cost, k =1,2,..., K:
T(u)-1
= argmin , B, { Z cime} +Eu {nl5(a)}
t=0 _,—/
J(1,5)
C(w)

Challenges:

1. C(u) does not have closed form expression.
2. p is not known, only the surrogate action
policy px(alx) is known.

How to tackle?

Likelihood fn. p(y1.+|x) >3 p(alx) and
J(1j,3¢) > J(pj(alx), 5k). Equality when j = k.
— Can at best show relative optimality holds.

Set of all possible observation

sequence trajectories 1, o, ...

Main Results.
1. Necessary and sufficient conditions for
relatively optimal stopping.
2. Examples: Optimal SHT, Bayesian Search
3. Finite sample effects on (1):
Statistical tests for relative optimality, bounds
on Type-1/11 errors.
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Conditions for Relatively Optimal Stopping:
Find positive reals si(x, a) s.t. Vj, k

(7) Zpk(x|a)(sk(x, a) —sk(x,b)) <0, a,bec A
(i)d(px; 3k) + Cu) < J(pj 36) + Cy) — (7)

Above conditions test:
1. Optimal choice of stopping action
2. Relative optimality of policy i

Ideas behind proof:

Sufficient statistic for policy pux: pp, (y1:7]x).
Necessity of (7): Uses Blackwell dominance.
Pui (yr:rx) =5 pr(alx)

Sufficiency of (7): Since Y is unknown, assume
|V| = |A|, pk: injective map from Y to A.

Relating optimal stopping to Bayesian UM:
J(w,s): Only depends on stopping posterior
distribution p, (x|y1.~). Hence,

Pu(yi+|x) — attention a(y|x) in Bayesian RP.
C(p) — attention cost in Bayesian RP.
J(p,5) — —ve of expected utility in Bayesian RP.

Example. Inverse SHT: Stopping time problem
with structure. X = A = {1,2},s(x,x) =0,
C(p) = Ep{r(m)}-

Simulation Results: 3 decision problems

3.5 20 M-

— True stopping costs (yellow points) lie in the
feasible set generated by (7).

— Lower bounding expected stopping time:
Given p(a|x) for some policy i, E,(7) can be
lower bounded via (7):

Eu{T} >

mins, . maxx B, {7} + J(pk, 5¢) — J(p, 5k),

where 5;.x € feasible set (blue region).
(Simulation free aproximation)
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Finite Sample Effects on Detecting Relative
Optimality (7).

Consider InverseS/Hl. Given empirical dataset
D = {0, Alalx), Eu{r}}

D computed using Ly < co samples for kth
decision problem. Denote L. = {L}.

Plug-in Test for relatively optimal stopping:
> Br(x[a)(sk(x, a) = s(x,b)) <0, a,be A
X

J(Br,5k) + Cluw) < I3y, 5) + Ciy)  (8)

How accurate is the plug-in test (8)?

Events Hp, Hi: D generated and not generated,
resp., by relatively optimal agent policies {1 }.
Hypothesis Test: Declare Hy if (8) is feasible,
otherwise H;.

Finite Sample Result.

Bounds on Type-1/Il errors of Hyp. Test:
P(Hy|Ho) < 61,0(D), L) exp{—¢1,0(D, L)}, and
P(HolH1) < 6o,1(ID, L) exp{—¢0,1(D, L)},

where 6o,1(+), 01,0("), $0,1(-), ¢1,0(-) € R+
decrease with increasing sample size L.

QOutline of proof: Finite sample result

Pmfs py(a|x): Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality to bound error between
pmfs: B(max, |pi(alx) — Br(alx)] > €) < 5u(e)

Empirical avg. stopping time Eu/k{\T} Assume
7(uk) < Tmax V k a.s., Hoeffding’s inequality
to bm error from true mean:

POEL {7} — Ew {7} = €) < Yic(Timax; €)

Union bound: Combine DKW and Hoeffding
bounds to get error bound between D and D:
P(D —D| > ¢) < r(e)

Compute minimum perturbation (D) such
that D + e(D) fails (7), set (D) — € in union
bound to get Type-l error bound.

Intuition: If D + ¢(D) fails (8), then all
datasets within 5(]]3)) ball PASS the test (7).
Type-| error: Probability that true dataset lies
outside the ¢(D) ball.
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Current Research

1. Deep Bayesian Revealed Preference: Feature engineering for
richer state space representation of real-world data

2. Inverse Controlled Sensing: How to detect if a sensing agent
optimally switches between sensing modes based on target

measurements?

3. Inverse-Inverse Reinforcement Learning: How to mask
agent strategy? Optimal stealth-performance trade-off

4. Structural Results: How to exploit problem structure to
reduce computation complexity of IRL conditions? Does it
suffice to check relative optimality of only few pairs of agents?

15/16



Thank You!
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