Inverse Reinforcement Learning A-Exam Presentation

Kunal Pattanayak

Committee:

Vikram Krishnamurthy (Chair) Jayadev Acharya Siddhartha Banerjee

Introduction. Motivation and State-of-the-Art

Problem: Consider a decision-making agent. Ground truth $x \rightarrow$ takes action *a*. **How to identify underlying strategy from behavior** p(a|x)?

Ans: Inverse Reinforcement Learning (IRL)



Why IRL?

- Autonomous navigation: Learning from expert driver's actions [1]
- Interpretable ML: Understanding black-box classification behavior
- Stealthy Radar Operation: Extract adversary strategy, avoid detection

Lines of Work:

- I. Traditional IRL in ML [2-4]:
- Markov Decision Process
- <u>Assumes</u> the existence of a reward that *rationalizes* agent actions
- **II. Behavioral/Micro- Economics** [5–8] (Revealed Preference):
- Constrained Utility Maximization
- <u>Tests</u> for the existence of a rationalizing utility function (More fundamental)
- Set-valued estimation of utility function

• Revealed Preference (RP). Background and Notation

Contributions:

- Part A: Unifying Bayesian and non-Bayesian RP [9]
- Part B: Interpretable Deep Image Classification [10]
- Part C: Interpreting YouTube Commenting Behavior [11]
- Part D: Inverse Optimal Stopping [12, 13]

Revealed Preference (RP). Background and Notation

Classical RP (Single Agent) [5, 8]

Known: Sequence of budgets (probe) and consumption bundles (response) $\{g_{1:K}, \beta_{1:K}\}, g_k(\cdot) > 0$ and non-decreasing, $\beta_k \in \mathbb{R}^N_+, k = 1, 2, \dots, K$ Aim: Test for budget constrained utility maximization. Estimate monotone utility function $u(\beta) > 0$ s.t.

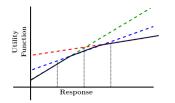
 $\beta_k = \operatorname{argmax}_{\beta \in \mathbb{R}^N_+} u(\beta), \ g_k(\beta) \leq 0$

Solution (Generalized Afriat's Thm. [8]):

Find positive reals u_k , λ_k s.t.

$$u_s - u_t - \lambda_t g'_t(\beta_s) \le 0, \ \forall \ s, t \qquad (1)$$

$$u(\beta) = \min_{k} \{ u_k + \lambda_k g_k(\beta) \}$$
(2)



Bayesian RP (Multiple Agents) [7]

Known: Collection of agents $\mathcal{K} = \{1, 2, ..., K\}$. Finite states \mathcal{X} , prior π_0 , observations \mathcal{Y} , actions \mathcal{A} . Agent k: Utility $U_k(x, a)$ (probe), Observation likelihood $\alpha_k(y|x)$ (attention response). Computes posterior $p_k(x|y)$ and takes action a. Aim: Test for constrained Bayesian utility maximization (UM). Estimate rational inattention (RI) cost $C(\alpha)$ s.t.

$$\alpha_{k} = \operatorname{argmax}_{\alpha} \underbrace{\mathbb{E}_{\pi_{0}, \alpha} \{ U_{k}(x, a^{*}(y)) \}}_{J(\alpha, U_{k})} - C(\alpha)$$

$$a^{*}(y) = \operatorname{argmax}_{a} \mathbb{E}\{U_{k}(x, a)|y\}$$
(3)

Existence (NIAS and NIAC inequalities [7]):

Find positive reals c_k s.t.

$$J(\alpha_t, U_t) - c_t \ge J(\alpha_s, U_t) - c_s \,\forall s, t \tag{4}$$

- Convex feasibility to identify utility maximization.
- Traditional IRL closely resembles NIAS inequality [7] -"Find rewards for which changing the observed policy is worse off for the agent".
- Bayesian RP is more fundamental Does not assume the existence of *C*.

- Afriat's Theorem [5]: $g_k(\beta) = p'_k\beta 1, \ p_k \in \mathbb{R}^M_+$ in (1).
- Central Idea in classical and Bayesian RP: Relative optimality suffices for global optimality.

Research Motivation:

 Piece-wise stitching of budgets to construct a utility function that rationalizes the data.

Can it be done for Bayesian RP too? \rightarrow Equivalence Result [9].

- Can the RP test be be used to understand complex black-box behavior? \rightarrow [10] for Deep Image Classification, [11] for YouTube comments.
- Variation in responses due to varying probes reveals underlying strategy (utility).
 Extension of philosophy to stopping time problems → [12, 13]

Part A: Unifying Classical and Bayesian RP

Classical RP - 1967, Bayesian RP - 2015. Identical Idea: Check for relative optimality.

Does there exist a formal equivalence?

Yes, but not obvious. Utility u is unknown in classical RP, and known in Bayesian RP. <u>**Result 1.**</u> Classical RP test for **unknown** budgets $\{g(\beta) - \gamma_k \leq 0\}$, known utilities $\{u_k\}$.

$$\gamma_{s} - \gamma_{t} - \lambda_{t} (u_{t}(\beta_{s}) - u_{t}(\beta_{t})) \leq 0$$

$$g(\beta) = \max_{k} \{ \gamma_{k} + \lambda_{k} (u_{k}(\beta) - u_{k}(\beta_{k})) \} \quad (5)$$

<u>Result 2.</u> Bayesian RP test is equivalent to (5) on the Blackwell partial order for pmfs. **Key Idea.** In classical RP, $u(x) \uparrow \text{if } x \uparrow$ element-wise. Similarly, expected utility $J(\alpha, U) \uparrow \text{if } \alpha \uparrow \text{wrt Blackwell order } (\mathcal{B})[14]$: Partial order on observation likelihoods.

 $\alpha \geq_{\mathcal{B}} \bar{\alpha} \implies \bar{\alpha} = \alpha Q, \ Q: \text{ row stochastic}$

 $\bar{\alpha}$ is obtained by stochastically garbling α , and hence, Blackwell dominated by α .

Parameter Mapping for Equivalence Result

Classical RP	Bayesian RP	
Element-wise order	≡	Blackwell order
Time step <i>k</i>	\equiv	Agent index k
Consumption β_k	\equiv	Obs. Likelihood α_k
$Budget\ g(\beta) - \gamma_k$	\equiv	Cost $C(\alpha) - C(\alpha_k)$
Jtility function $u_k(\cdot)$	\equiv	Exp. utility $J(\cdot, U_k)$

Result 3.

ι

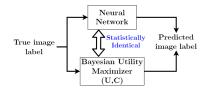
Enhancing [7]: Construction of a monotone (wrt Blackwell order) and convex cost C.

$$C(\alpha) = \max_{k \in \mathcal{K}} \{ c_k + J(\alpha, U_k) - J(\alpha_k, U_k) \}$$
(6)

Above reconstruction follows the style of Afriat's Theorem and builds on existence conditions of [7].

Part B: Interpretable Deep Image Classification

Can neural networks' (NN) image classification be explained by Bayesian UM?



- Experiments on CIFAR-10 dataset, 200 trained NNs, 5 architectures

Main Idea.

1. Record classification performance of a trained NN by varying training parameters.

2. Bayesian RP test for Interpretability: Estimate BOTH utility and cost that rationalize NN dataset

 $\mathbb{D} = \{\pi_0, \{p_k(a|x), k = 1, 2, \dots, K\}$

U - preference ordering over image classes,

C - Learning Cost (wrt training parameter).

Variable Map:

State: $X \sim \pi_0$ - true label. π_0 from CIFAR-10 Observation: $Y \sim \alpha(y|x)$ - accuracy of learned features Action: a = f(y) - predicted image label Agent: Trained NN, $k \in \{1, \dots, K\}$ indexes training parameter Estimate: Classification preference: $U_k(x, a)$

Cost of training: C(p(a|x))

Main Results.

1. Bayesian UM robustly fits deep image classification (dataset $\mathbb D$ passes Bayesian RP test with high margin).

2. Reconstructed U, C can predict NN performance without simulation

(at least 94% accuracy).

3. Sparsity-enhanced version (fewer variables)

of Bayesian RP test.

Robustness. How well does NN dataset \mathbb{D} pass the Bayesian RP test?

Vary training epochs

N

- Why Robustness?: Find the solution that passes Bayesian RP test with largest margin.

Robustness value \mathcal{R} : Distance of interior-most point from edge of feasible set.

Higher $\mathcal{R} \implies$ better fit to UM model.

 $\mathcal{R} = \max_{\epsilon > 0} \epsilon, J(p_t, U_t) - c_t - J(p_s, U_t) + c_s \ge \epsilon$

Robustness results on NN dataset:

Aggregate classification performance of 20 NNs by varying **training epochs**.

Architecture	<i>R</i> (×10 ^{−4})
LeNet	37.97
AlexNet	40.60
VGG16	119.8
ResNet	132.3
etwork-in-Network	149.1

Inference: NiN and ResNet architectures fit Bayesian UM model 4x better than less complex architectures. Predictive Ability. How well does interpretable model predict image classification performance? – Inject artificial Gaussian noise into CIFAR-10 training dataset and vary noise variance – Use **sparsest solution** of Bayesian RP test min $\sum_{k=1}^{K} ||U_k||_1, J(\rho_t, U_t) - c_t \ge J(\rho_s, U_t) - c_s$

Main Idea.

1. Estimate U for **new noise variance** by interpolating $U_{1:K}$ (from NN simulations for known noise variances).

2. Solve constrained Bayesian UM with utility U and reconstructed cost C.

Result: Predicted performance $\hat{p}(a|x)$. Compare against true performance p(a|x).

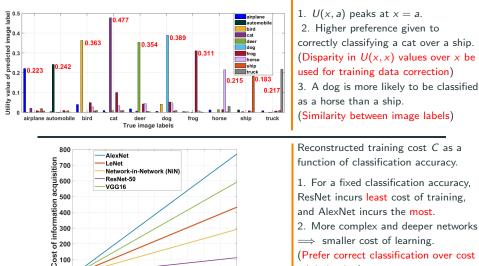
Prediction Accuracy: For new noise variance. $\max_{x,a} |\hat{p}(a|x) - p(a|x)| = 0.04$ KL divergence between $p(a|x), \hat{p}(a|x)$:

• LeNet: 0.015

- ResNet: 0.006NiN: 0.018.
- AlexNet: 0.012
- VGG16: 0.016

Low KL-divergence: Interpretable model is statistically similar to trained NN. 7 / 16

Insights: Bayesian RP on deep image classification



0.8 0 9

n (classification accuracy)

n 0.1 0.2 0 3 \implies smaller cost of learning.

U(x, a) for the ResNet architecture.

(Prefer correct classification over cost minimization)

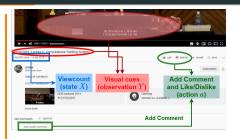
Part C: Interpreting YouTube Commenting Behavior

State: $X \in \{$ low viewcount, high viewcount $\}$, $X \sim \pi_0$ (prior) Observation: $Y \sim \alpha(y|x)$. Visual cues from thumbnail, video description Attention function of viewer: α Action: *a*. Comment count (high or low), sentiment (positive, negative or neutral) Commenter's reputation: U(x, a)Rational Inattention Cost: $C(\alpha)$ Agent: $k \in \{1, 2, ..., K\}$. Video category, frame.

Aim: Given $\mathbb{D} = \{\pi_0, \{p_k(a|x)\} \text{ from } K \text{ agents, estimate utility functions } U_k \text{ and } RI \text{ cost } C \text{ that rationalize } \mathbb{D}.$

Reconstructed utility functions and cost:
 Parametrize interpretable model for YouTube commenting behavior.

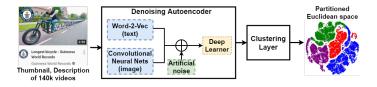
- Bayesian RP test (5): Pass test only if pass margin exceeds ϵ (user-defined).



Massive dataset: 140k videos, 25k channels. Dimension Reduction. How to group videos of specific topic with similar commenting behavior?

(i) *User-centric*: Deep Clustering using thumbnail & description.

 (ii) Content-centric: Video category.
 Main Result: YouTube commenting is consistent with utility maximization.
 Estimated utility can predict commenting behavior. (83% accuracy).



Autoencoder partitions YouTube dataset into 8 distinct clusters (agents).

How well does Bayesian Utility Maximization explain dataset?

General Rational Inattention cost: All 8 clusters pass test.

Renyi/Shannon mutual information cost: 2/8 clusters pass test.

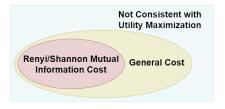
Finer Granularity. 18 categories using topic (Gaming, Politics, Education, etc.)

Result: 10 categories satisfy general cost, 2 categories satisfy Renyi/Shannon. **Key Insights**:

- Clusters fail Renyi/Shannon by small margin \implies model is robust.
- Utility (reputation) is substantially higher for popular videos.
- *Predictive Accuracy*. Given a video in a specific category, predicts comment count with 83% accuracy; sentiment with 80% accuracy.

Quantifying robustness:

- For categories that satisfy utility maximization, how far are they from failing.
- For categories that don't satisfy, how close are they to passing.



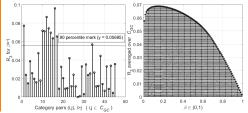
1. For categories that fail general cost, find min. perturbation to pass (ϵ_1). Result: Average $\epsilon_1 = 1.2 \times 10^{-3}$.

2. For categories that satisfy general cost, find max. perturbation to fail (ϵ_2). Result: Average $\epsilon_2 = 7.01 \times 10^{-3}$. Conclusion: $\epsilon_1/\epsilon_2 \approx 6$, hence categories are much closer to

satisfying general cost than failing.

3. For categories that satisfy general cost, find min. perturbation to satisfy Renyi or Shannon cost.

Renyi Entropy: $H_{\beta}(p) = \sum_{i=1}^{n} \log(p_i^{\beta})/(1-\beta)$. **Shannon cost:** Renyi cost with $\beta \to 1$.



Part D: Inverse Optimal Stopping

Classical/Bayesian RP: Tests for static optimization.

How to extend idea to detect sequential optimization, e.g. optimal stopping?
 Main Idea. Change parameters and observe change in policy (strategy)

Decision Problems: $k \in \{1, 2, \dots, K\}$ **Time step:** t = 1, 2, ...**State:** $x \sim \pi_0, x \in \mathcal{X} = \{1, 2, ..., X\}$ **Observation:** $y_t \in \mathcal{Y}, y_t \sim B(y_t|x)$ Action: $a \in A$ **Running cost:** $\bar{c}_t = [c_t(1) \ c_t(x_2) \dots c_t(X)]$ **Stationary Policy:** $\mu_k : \Delta(\mathcal{X}) \to \mathcal{A} \cup \{\text{continue}\}$ **Stopping Cost:** $\bar{s}_k(a) = [s_k(1, a) \dots s_k(X, a)]$ Aim: Given $\{\pi_0, p_k(a|x), C(\mu_k)\}$, test if $\exists \bar{s}_k(a)$ s.t. μ_k minimizes expected cost, $k = 1, 2, \dots, K$: $\tau(\mu) - 1$ $\mu_{k} = \operatorname{argmin}_{\mu} \mathbb{E}_{\mu} \{ \sum c'_{t} \pi_{t} \} + \mathbb{E}_{\mu} \{ \pi'_{\tau} \bar{s}_{k}(a) \}$ $J(\mu, \bar{s}_k)$ $C(\mu)$

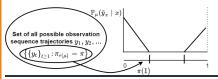
Challenges:

1. $C(\mu)$ does not have closed form expression.

2. μ_k is not known, only the surrogate action policy $p_k(a|x)$ is known.

How to tackle?

Likelihood fn. $p(y_{1:\tau}|x) \ge_{\mathcal{B}} p(a|x)$ and $J(\mu_j, \bar{s}_k) \ge J(p_j(a|x), \bar{s}_k)$. Equality when j = k. – Can *at best* show relative optimality holds.



Main Results.

1. Necessary and sufficient conditions for relatively optimal stopping.

- 2. Examples: Optimal SHT, Bayesian Search
- 3. Finite sample effects on (1):

Statistical tests for relative optimality, bounds on Type-I/II errors.

Conditions for Relatively Optimal Stopping:

Find positive reals $s_k(x, a)$ s.t. $\forall j, k$ (i) $\sum_{x} p_k(x|a)(s_k(x, a) - s_k(x, b)) \le 0$, $a, b \in \mathcal{A}$

 $(ii)J(p_k,\bar{s}_k)+C(\mu_k)\leq J(p_j,\bar{s}_k)+C(\mu_j) \qquad (7)$

Above conditions test:

- 1. Optimal choice of stopping action
- 2. Relative optimality of policy μ_k

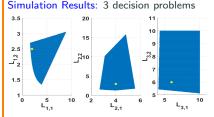
Ideas behind proof:

Sufficient statistic for policy μ_k : $p_{\mu_k}(y_{1:\tau}|x)$. Necessity of (7): Uses Blackwell dominance. $p_{\mu_k}(y_{1:\tau}|x) \ge_{\mathcal{B}} p_k(a|x)$ Sufficiency of (7): Since \mathcal{Y} is unknown, assume $|\mathcal{Y}| = |\mathcal{A}|, \ \mu_k$: injective map from \mathcal{Y} to \mathcal{A} .

Relating optimal stopping to Bayesian UM:

 $J(\mu, s)$: Only depends on stopping posterior distribution $p_{\mu}(x|y_{1:\tau})$. Hence,

 $p_{\mu}(y_{1:\tau}|x) \rightarrow \text{attention } \alpha(y|x) \text{ in Bayesian RP.}$ $C(\mu) \rightarrow \text{attention cost in Bayesian RP.}$ $J(\mu, \bar{s}) \rightarrow -ve \text{ of expected utility in Bayesian RP.}$ **Example.** Inverse SHT: Stopping time problem with structure. $\mathcal{X} = \mathcal{A} = \{1, 2\}, s(x, x) = 0, C(\mu) = \mathbb{E}_{\mu} \{\tau(\mu)\}.$



- True stopping costs (yellow points) lie in the feasible set generated by (7).

- Lower bounding expected stopping time: Given p(a|x) for some policy μ , $\mathbb{E}_{\mu}(\tau)$ can be lower bounded via (7): $\mathbb{E}_{\mu}\{\tau\} \ge$ $\min_{\bar{s}_{1:K}} \max_{k} \mathbb{E}_{\mu}\{\tau\} + J(\mu_{k}, \bar{s}_{k}) - J(p, \bar{s}_{k}),$

where $\bar{s}_{1:K} \in$ feasible set (blue region). (Simulation free approximation)

13/16

Finite Sample Effects on Detecting Relative Optimality (7).

Consider Inverse SHT. Given empirical dataset $\widehat{\mathbb{D}} = \{\pi_0, \hat{p}(a|x), \widehat{\mathbb{E}_{\mu}\{\tau\}}\}\$ $\widehat{\mathbb{D}}$ computed using $L_k \leq \infty$ samples for k^{th} decision problem. Denote $\mathbb{L} = \{L_k\}$.

Plug-in Test for relatively optimal stopping:

 $\sum_{x} \hat{p}_{k}(x|a)(s_{k}(x,a) - s_{k}(x,b)) \leq 0, \ a, b \in \mathcal{A}$ $J(\hat{p}_{k}, \bar{s}_{k}) + \hat{C}(\mu_{k}) \leq J(\hat{p}_{j}, \bar{s}_{k}) + \hat{C}(\mu_{j})$ (8)

How accurate is the plug-in test (8)?

Events H_0, H_1 : $\widehat{\mathbb{D}}$ generated and not generated, resp., by relatively optimal agent policies $\{\mu_k\}$. Hypothesis Test: Declare H_0 if (8) is feasible, otherwise H_1 .

Finite Sample Result.

Bounds on Type-I/II errors of Hyp. Test:

$$\begin{split} & P(H_1|H_0) \leq \theta_{1,0}(\widehat{\mathbb{D}},\mathbb{L}) \exp\{-\phi_{1,0}(\widehat{\mathbb{D}},\mathbb{L})\}, \text{ and } \\ & P(H_0|H_1) \leq \theta_{0,1}(\widehat{\mathbb{D}},\mathbb{L}) \exp\{-\phi_{0,1}(\widehat{\mathbb{D}},\mathbb{L})\}, \\ & \text{where } \theta_{0,1}(\cdot), \theta_{1,0}(\cdot), \phi_{0,1}(\cdot), \phi_{1,0}(\cdot) \in \mathbb{R}_+ \\ & \text{decrease with increasing sample size } \mathbb{L}. \end{split}$$

Outline of proof: Finite sample result

Pmfs $\hat{p}_k(a|x)$: Dvoretzky-Kiefer-Wolfowitz (DKW) inequality to bound error between pmfs: $\mathbb{P}(\max_a |p_k(a|x) - \hat{p}_k(a|x)| \ge \epsilon) \le \delta_k(\epsilon)$

Empirical avg. stopping time $\widehat{\mathbb{E}_{\mu_k}}\{\tau\}$: Assume $\tau(\mu_k) \leq \tau_{\max} \forall k \text{ a.s.}$, Hoeffding's inequality to bound error from true mean: $\mathbb{P}(|\widehat{\mathbb{E}_{\mu_k}}\{\tau\} - \mathbb{E}_{\mu_k}\{\tau\}| \geq \varepsilon) \leq \gamma_k(\tau_{\max}, \epsilon)$

Union bound: Combine DKW and Hoeffding bounds to get error bound between $\widehat{\mathbb{D}}$ and \mathbb{D} : $\mathbb{P}(|\widehat{\mathbb{D}} - \mathbb{D}| \ge \epsilon) \le \kappa(\epsilon)$

Compute minimum perturbation $\epsilon(\widehat{\mathbb{D}})$ such that $\widehat{\mathbb{D}} + \epsilon(\widehat{\mathbb{D}})$ fails (7), set $\epsilon(\widehat{\mathbb{D}}) \to \epsilon$ in union bound to get Type-I error bound.

Intuition: If $\widehat{\mathbb{D}} + \epsilon(\widehat{\mathbb{D}})$ fails (8), then all datasets within $\epsilon(\widehat{\mathbb{D}})$ ball PASS the test (7). Type-I error: Probability that true dataset lies **outside** the $\epsilon(\widehat{\mathbb{D}})$ ball.

Current Research

- 1. Deep Bayesian Revealed Preference: *Feature engineering for richer state space representation of real-world data*
- 2. Inverse Controlled Sensing: *How to detect if a sensing agent optimally switches between sensing modes based on target measurements?*
- 3. Inverse-Inverse Reinforcement Learning: *How to mask agent strategy? Optimal stealth-performance trade-off*
- 4. Structural Results: *How to exploit problem structure to reduce computation complexity of IRL conditions? Does it suffice to check relative optimality of only few pairs of agents?*

Thank You!

References

- Pieter Abbeel and Andrew Y Ng. "Apprenticeship learning via inverse reinforcement learning". In: Proceedings of the twenty-first international conference on Machine learning. 2004, p. 1.
- A. Y. Ng, S. J. Russell, et al. "Algorithms for inverse reinforcement learning.". In: *Icml*. Vol. 1. 2000, p. 2.

- Brian D Ziebart et al. "Maximum entropy inverse reinforcement learning.". In: Aaai. Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.
- Deepak Ramachandran and Eyal Amir. "Bayesian Inverse Reinforcement Learning.". In: IJCAI. Vol. 7. 2007, pp. 2586–2591.
- S. N. Afriat. "The construction of utility functions from expenditure data". In: International economic review 8.1 (1967), pp. 67–77.

- H. R. Varian. "Non-parametric analysis of optimizing behavior with measurement error". In: *Journal of Econometrics* 30.1-2 (1985), pp. 445–458.
- A. Caplin and M. Dean. "Revealed preference, rational inattention, and costly information acquisition". In: *The American Economic Review* 105.7 (2015), pp. 2183–2203.
- Francoise Forges and Enrico Minelli. "Afriat's theorem for general budget sets". In: *Journal of Economic Theory* 144.1 (2009), pp. 135–145.
- Kunal Pattanayak and Vikram Krishnamurthy. "Unifying Classical and Bayesian Revealed Preference". In: *arXiv* preprint arXiv:2106.14486 (2021).
- Kunal Pattanayak and Vikram Krishnamurthy. "Behavioral Economics Approach to Interpretable Deep Image Classification. Rationally Inattentive Utility Maximization

Explains Deep Image Classification". In: *arXiv preprint arXiv:2102.04594* (2021).

- William Hoiles, Vikram Krishnamurthy, and Kunal Pattanayak. "Rationally Inattentive Inverse Reinforcement Learning Explains YouTube Commenting Behavior.". In: J. Mach. Learn. Res. 21.170 (2020), pp. 1–39.
- Vikram Krishnamurthy and Kunal Pattanayak. "Necessary and Sufficient Conditions for Inverse Reinforcement Learning of Bayesian Stopping Time Problems". In: *arXiv preprint arXiv:2007.03481* (2020).
- Kunal Pattanayak, Vikram Krishnamurthy, and Erik Blasch. "Inverse Sequential Hypothesis Testing". In: 2020 IEEE 23rd International Conference on Information Fusion (FUSION). IEEE. 2020, pp. 1–7.

David Blackwell. "Equivalent comparisons of experiments". In: *The annals of mathematical statistics* (1953), pp. 265–272.